1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
| import torch import numpy as np
t1 = torch.tensor(4.) print(t1) print(t1.dtype)
t2 = torch.tensor([1., 2, 3, 4]) print(t2) print(t2.dtype)
t3 = torch.tensor([1., 2, 3, 4]) print(t3) print(t3.dtype)
t4 = torch.tensor([[1, 2], [1., 4], [4, 3], [5, 6]]) print(t4) print(t4.dtype)
print(t1.shape) print(t2.shape) print(t3.shape) print(t4.shape)
x = torch.tensor(3., requires_grad=True) w = torch.tensor(4., requires_grad=True) b = torch.tensor(5., requires_grad=True)
y = w * x + b print(y) y.backward()
print(x.grad) print(w.grad) print(b.grad)
x = np.array([[1, 2], [2, 4]])
y = torch.from_numpy(x)
y = torch.tensor(x)
print(y) print(y.dtype)
z = y.numpy() print(z)
|