1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
| import torch import numpy as np
inputs = np.array([[0, 0, 3], [0, 1, 9], [1, 0, 8], [1, 1, 28]], dtype='float32')
outputs = np.array([[0, 1], [9, 4], [7, 3], [6, 7]], dtype='float32')
inputs = torch.from_numpy(inputs) outputs = torch.from_numpy(outputs)
w = torch.randn(2, 3, requires_grad=True) b = torch.randn(2, requires_grad=True)
def model(x): return x @ w.t() + b
def mse(t1, t2): return torch.sum((t1 - t2) ** 2) / t1.numel()
learning_rate = 1e-5 for t in range(500): y_pred = model(inputs) loss = mse(y_pred, outputs) loss.backward() with torch.no_grad(): w -= learning_rate * w.grad b -= learning_rate * b.grad w.grad.zero_() b.grad.zero_() print(loss.item())
|